Your Contact to Sensirion

Umschlag

Contact

Contact our sensor experts:

Contact Form

Distributoren

Distributors

Here you find the nearest distributor in your area:

Our Distributors

Standorte

Locations

Find out where we are located:

Our Locations

toggle menu
  • Home
  • News
  • Sensirion Products
    • SEK-SensorBridge (Evaluation Kit)
    • SEN5x Environmental Sensor Node
    • SCD4x CO2 Sensors
    • SFA30 Formaldehyde Sensor Module
    • SGP41 VOC+NOx Sensor
    • SGP40 VOC Sensor
    • SHT4x Humidity and Temperature Sensors
  • Partner Spotlight
    • Partner Spotlight SparkFun
    • Partner Spotlight MikroElektronika
    • Partner Spotlight Seeed
  • Archive
    • Platforms
      • Environmental Sensor Shield
      • Smart Gadget Development Kit
      • Wearable Development Kit
      • Raspberry Pi
      • Qualcomm Snapdragon
      • Arduino
      • Cypress PSoC Series
      • Generic Linux Support
      • Thingstream MQTT IoT Sensor Starter Kit
    • Applications
      • Sensors for Ventilation
      • CO2 Monitor Reference Design
      • SHTC3 BLE Beacon Development Kit
      • Directional Wind Meter Using SDP3x
      • Smart Speaker
      • Archive
    • Labs
      • #21 - Using an RJ45 Breakout Board Connect with Evaluation Kit Cables
      • #20 - Integrate Flex-PCB Sensors into Prototyping Setups
      • #19 - Smart Factory Particle Monitor Network
      • #18 - Inhalation Application Benefits
      • #17 - Sleep Analysis and Pulse Monitor
      • #16 - Thermal Comfort Sensor
      • #15 - Anti-Fogging for Bathroom Mirrors
      • #14 - Improved Puff Sensing of Inhalation Devices
      • #13 - Spirometer
      • #12 - Breath Detection
      • #11 - Stress, Mood and Emotion Sensing
      • #10 - CO2 Sensing in Car
      • #9 - Milk Fat Concentration Sensor
      • #8 - Presence Detection with IR Sensor
      • #7 - RH Sensor Trigger for BLE Beacon
      • #6 - Smart Inhaler
      • #5 - Windshield Ice Detector
      • >> See All Labs Ideas
    • Tutorials
      • Wearable Development Kit: Build Your Own Device
      • Wearable Development Kit: Logging Data
      • Raspberry Pi: SFM Software Package
      • Raspberry Pi: Alexa with Indoor Air Quality
      • Raspberry Pi: Using Flow Sensors
      • Raspberry Pi: Weather Station
      • Arduino: Create Your Own CO2 Monitor
      • Arduino: Stand-Alone Liquid Flow Meter
      • Arduino: Interface for Liquid Flow Sensors
      • Arduino: Weather Station
      • Arduino: Closed Loop Volume Controller Using Liquid Flow Sensors
      • Arduino: Interface for Multiple SF06 Liquid Flow Sensors
      • Arduino: Interface for SF06 Liquid Flow Sensors with Level Shifter
      • Arduino: CAN Bus Flow Meter
  • Global Website

Contact

search
cart
DOWNLOAD CENTER BUY NOW INVESTORS
Sensirion AG Switzerland
  • Home
  • News
  • Sensirion Products
    • SEK-SensorBridge (Evaluation Kit)
    • SEN5x Environmental Sensor Node
    • SCD4x CO2 Sensors
    • SFA30 Formaldehyde Sensor Module
    • SGP41 VOC+NOx Sensor
    • SGP40 VOC Sensor
    • SHT4x Humidity and Temperature Sensors
    • Sensirion Products

      Start testing our sensors

      Here you can find all information for evaluating and testing Sensirion's latest sensor solutions. From drivers and software to tutorials and quick start guides - we try to offer all tools necessary so that you can kick-start your application!

  • Partner Spotlight
    • Partner Spotlight SparkFun
    • Partner Spotlight MikroElektronika
    • Partner Spotlight Seeed
  • Archive
    • Platforms
      • Environmental Sensor Shield
      • Smart Gadget Development Kit
      • Wearable Development Kit
      • Raspberry Pi
      • Qualcomm Snapdragon
      • Arduino
      • Cypress PSoC Series
      • Generic Linux Support
      • Thingstream MQTT IoT Sensor Starter Kit
    • Applications
      • Sensors for Ventilation
      • CO2 Monitor Reference Design
      • SHTC3 BLE Beacon Development Kit
      • Directional Wind Meter Using SDP3x
      • Smart Speaker
      • Archive
        • On/Off Body Detection
        • Perspiration
        • Antifogging in VR Goggles
    • Labs
      • #21 - Using an RJ45 Breakout Board Connect with Evaluation Kit Cables
      • #20 - Integrate Flex-PCB Sensors into Prototyping Setups
      • #19 - Smart Factory Particle Monitor Network
      • #18 - Inhalation Application Benefits
      • #17 - Sleep Analysis and Pulse Monitor
      • #16 - Thermal Comfort Sensor
      • #15 - Anti-Fogging for Bathroom Mirrors
      • #14 - Improved Puff Sensing of Inhalation Devices
      • #13 - Spirometer
      • #12 - Breath Detection
      • #11 - Stress, Mood and Emotion Sensing
      • #10 - CO2 Sensing in Car
      • #9 - Milk Fat Concentration Sensor
      • #8 - Presence Detection with IR Sensor
      • #7 - RH Sensor Trigger for BLE Beacon
      • #6 - Smart Inhaler
      • #5 - Windshield Ice Detector
      • >> See All Labs Ideas
    • Tutorials
      • Wearable Development Kit: Build Your Own Device
      • Wearable Development Kit: Logging Data
      • Raspberry Pi: SFM Software Package
      • Raspberry Pi: Alexa with Indoor Air Quality
      • Raspberry Pi: Using Flow Sensors
      • Raspberry Pi: Weather Station
      • Arduino: Create Your Own CO2 Monitor
      • Arduino: Stand-Alone Liquid Flow Meter
      • Arduino: Interface for Liquid Flow Sensors
      • Arduino: Weather Station
      • Arduino: Closed Loop Volume Controller Using Liquid Flow Sensors
      • Arduino: Interface for Multiple SF06 Liquid Flow Sensors
      • Arduino: Interface for SF06 Liquid Flow Sensors with Level Shifter
      • Arduino: CAN Bus Flow Meter
Sensirion AG Switzerland
  • Sensirion Developers
  • Archive
  • Tutorials
  • Arduino: Interface for Multiple SF06 Liquid Flow Sensors

Tutorial: Arduino Interface for Multiple SF06 Liquid Flow Sensors

Summary

This quick start guide is aimed at customers who have worked with our Liquid Flow Meter Kits and are evaluating Sensirion liquid flow sensors in a prototyping scenario. This guide describes how to set up and connect multiple SLF3x sensors to an Arduino UNO via the Adafruit TCA9548A breakout board and how to run a first simple measurement using sample code.


What you need

  • SLF3x liquid flow sensor
  • 6 pin Molex Micro Blade cable
  • Liquid Flow Meter Kit
  • Arduino UNO (Tested to work)
  • Adafruit TCA9548A 1-to-8 I2C Multiplexer Breakout
  • Sensirion Arduino Code examples

What you have to do

Setting up your Arduino (UNO)

Please note that these steps are simply a suggestion. Sensirion AG is not responsible for any technical issues arising from the Arduino board, setting it up and all electrical connections.

  • Download the Arduino Software here: https://www.arduino.cc/en/Main/Software
  • Follow Arduino’s Getting Started Guide (https://www.arduino.cc/en/Guide/HomePage)
  • For Arduino UNO: We have successfully tested our sample code with the Arduino UNO board and therefore recommend using it (Arduino UNO Getting Started Guide (https://www.arduino.cc/en/Guide/ArduinoUno)).

If you have successfully connected and tested your Arduino board, you are ready to continue to the next part.


Connecting your sensor

Figure 1: Connecting two SLF3x liquid flow sensor with 6-pin Molex connector to the Arduino UNO

Wiring diagram with two SLF3x sensors

Connect your liquid flow sensors to the Arduino board as described in figure above. Using screw headers may help make reliable and easy to use connections (for example:  277-1275-ND from www.digikey.com) In case you want to design and use your own cable, please follow the pin descriptions shown below precisely. Using the wrong voltage or applying voltages to the wrong pins can damage the sensor. Sensirion AG is not responsible for any damages incurred this way.

Figure 2: Molex connectors
Pin Label6 pin Molex Pin-no.
(SLFx sensors)
Arduino Pins
SCL5A5 or SCL
SDA2A4 or SDA
VDD33.5
GND4GND

Running your first measurement

Once you have successfully tested your Arduino and have connected your sensors correctly, you can start your first measurement. Double-click ‘example_20_simple_measurement_multiple_SLF3x.ino’ of Example 20 of Sensirion AG’s sample Arduino code. This will launch the Arduino software suite and open the sample code. Simply upload the code to your Arduino board and wait for the process to finish. The measurement will begin automatically. In order to see the results, start the serial monitor from within the Arduino software suite (see arrow in the figure below).

After opening the serial monitor, a window will open that displays the sensor reading of all detected sensor. Klick the reset bottom on the Arduino to restart it. The example program will scan all 8 ports of the multiplexer and start the measurement on all detected sensors.

All code examples are commented for ease of understanding. Feel free to use and edit the code as you please. Remember to save a new copy before you start editing, to avoid overwriting the original sample code.


Follow Us

Sensirion Products

  • CO2 Sensors
  • Formaldehyde Sensors
  • VOC Sensors
  • Humidity and Temperature Sensors

Partner Spotlight

  • Sparkfun
  • MikroElektronika

Archive

  • Labs
  • Applications
  • Tutorials
  • Platforms

Further Information

  • Developer News
  • Download Center
  • FAQs
  • Contact
  • Locations

Your Contact to Sensirion

Umschlag

Contact

Contact our sensor experts:

Contact Form

Distributoren

Distributors

Here you find the nearest distributor in your area:

Our Distributors

Standorte

Locations

Find out where we are located:

Our Locations

Please Find Here Various Support Topics

Buy Our Products at Your Local Distributor

About Sensirion

Environmental Sensors

Flow Sensors

Media/Newsroom

Investors

Useful Links

Sensirion Automotive Solutions

Career

Support Center

Partner Access

General

Terms and Conditions

Terms and Conditions for US Customers

Supplier Social Responsibility

Quality, Environment and Ethics

Sensirion AG

Laubisruetistrasse 50

8712 Staefa ZH, Switzerland

Tel. +41 44 306 40 00

infosensirioncom

2022 © Sensirion AG Switzerland
  • Home
  • Sitemap
  • Privacy Policy and Cookies
  • Imprint
  • Login
  • Disclaimer